Sawyer Field Lea County, New Mexico

KEM ENERGY. Inc 06/2019

Important Disclaimer:

The information provided herein (the "Presentation") is for informational purposes only and is not intended as an offer or solicitation for the purchase or sale of any financial instrument.

The Presentation may contain information that is privileged, confidential, legally privileged, and/or exempt from disclosure under applicable law and you are hereby notified that any disclosure, copying, distribution, or use of the information contained herein (including any reliance thereon) is strictly prohibited. The information and opinions presented in the Presentation have been obtained and derived from sources believed to be accurate but KEM provides no warranty with respect to its accuracy, completeness, sufficiency, appropriateness for your purposes or timeliness. Matterhorn disclaims, to the extent permitted by applicable law or regulation, all liability for any use of the Presentation.

The Presentation may contain "forward-looking" information and such information is based upon certain assumptions about future events or conditions and is intended only to illustrate hypothetical results under those assumptions, not all of which are specified herein. Actual events or conditions may differ from those assumed herein. In addition, not all relevant events or conditions may have been considered in developing such assumptions. Accordingly, actual results will vary and the variations may be material. You should understand such assumptions and evaluate whether they are appropriate for your purposes. Past performance is not a guide to future performance. The Presentation neither constitutes an offer of securities for sale nor a solicitation of an offer to purchase securities.

Regarding Prospect Assembly:

Every experienced oil and gas investor or company understands that the passage of time and the decline of the domestic industry make it increasingly difficult to acquire complete records for each and every well within a potentially prospective area. KEM energy, Inc. ("KEM") diligently attempts to gather as much data as possible prior to the onset of any exploratory efforts on one of its prospects. In addition, should anecdotal (verbal) accounts provided to KEM a from other persons or entities regarding a well or prospect appear to be credible and verifiable, KEM shall reference that anecdotal information in its prospect summaries. In certain instances – for example, while leasing in a competitive area – the critical need for confidentiality may actually prevent KEM from requesting or obtaining well data from certain sources, either because (i). the person or company that possesses the data would, if informed of leasing activities in the area (by KEM's specific inquiry or request for well data), actively enter into competition for leases in that area, or (ii). the person or company that possesses the data is actively competing with KEM for leases in the prospect area, and is deliberately withholding the data in order to retain what is perceived to be a competitive advantage.

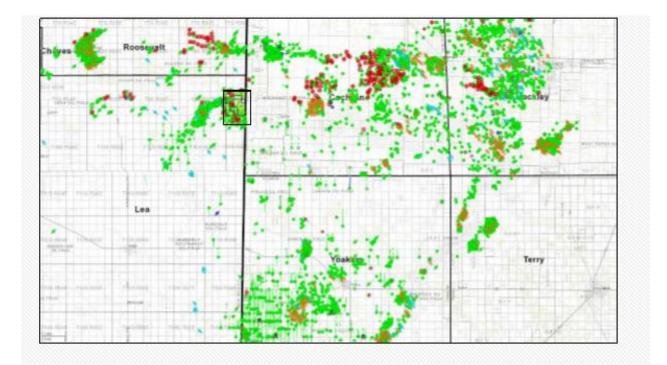
In addition, because of friendships, prior working relationships, or other association not known to KEM, another industry professional or company may possess or have the ability to acquire well data otherwise not available to KEM. For whatever reason, such a person or company representative may choose not to share that data – or even the knowledge that he possesses it – with KEM, or may verbally share (i.e., *"remember"*) anecdotal information in an ambiguous or unverifiable *"recollection"* that provides little or no credible information to KEM.

The purpose of this discussion is to emphasize that KEM makes a good faith effort to diligently acquire any and all well data for a prospect prior to the proposal and later marketing of that prospect under the terms and conditions of our Participation and Operating Agreements. Any credible well data not included by KEM in a prospect presentation should be understood to have been unavailable – for one or several of the reasons noted above – to KEM at the time of the proposal. Should any credible and verifiable well data become available after the assembly of a prospect has commenced, KEM shall immediately advise Participants of the new information, but cannot and shall not be held responsible for any delays incurred in acquiring that data prior to the time it was received – and, in the case of ambiguous or anecdotal verbal information thoroughly verified.

The information contained herein does not represent either investment advice or an offer to buy or sell securities. Potential investors are strongly advised to consult a qualified professional oil and gas industry advisor before making any decision regarding participation in any exploration prospect(s) or oil and gas venture(s). Every effort has been made to present accurate and timely information. However, KEM does not warrant the accuracy of such information which may be changed, deleted, or updated without notice. Investing in oil and gas exploration and production can be very exciting and financially rewarding; it can also lead to the loss of one's total investment. It is critically important for the potential investor to be fully informed and knowledgeable about not only the oil and gas business in general but also the reputation and track record of the company seeking investment.

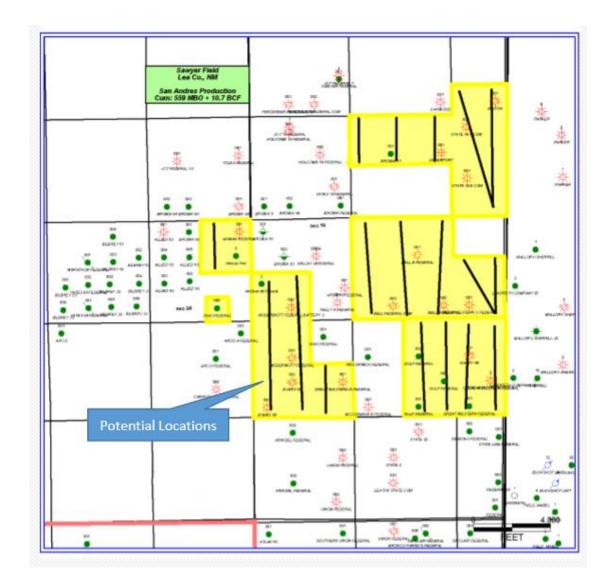
About Our Unrisked Reserve Estimates:

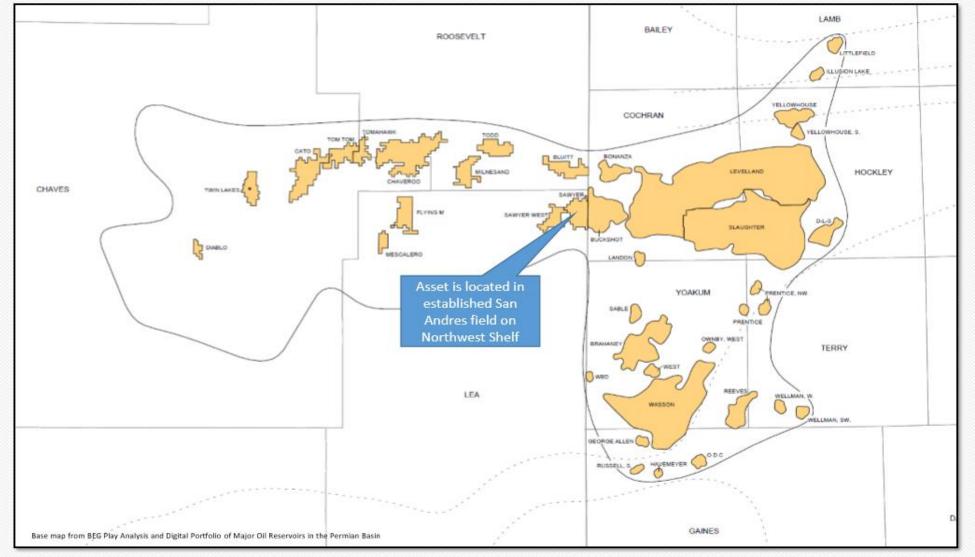
In attempting to quantify the "*upside*", or maximum possible recoverable reserve potential of a prospect, KEM endeavors to make a "*good faith*" estimate of the maximum "*unrisked*" volume of oil and gas that could possibly be extracted from the prospect reservoir under optimum conditions.


The probability of finding this optimal volume of oil and gas within the target reservoir depends upon many **risk factors**. Reservoir quality and quantity, seal, structural timing, hydrocarbon source issues, faulting, and availability of seismic data of the target are but a few of the many risk factors that typify each and every conversion and drilling prospect. KEM attempts to minimize each risk factor; however, the investor is reminded that the occasional unsuccessful conversion or dry hole is to expected, despite our best efforts. As with all conversion and drilling proposals, one is provided with the full range of potential return on investment: from unsuccessful conversion or dry hole to maximum or *"high side estimate"*. As noted above, investors are strongly advised to consult a qualified professional oil and gas industry advisor before making any decision regarding participation in an oil and gas venture.

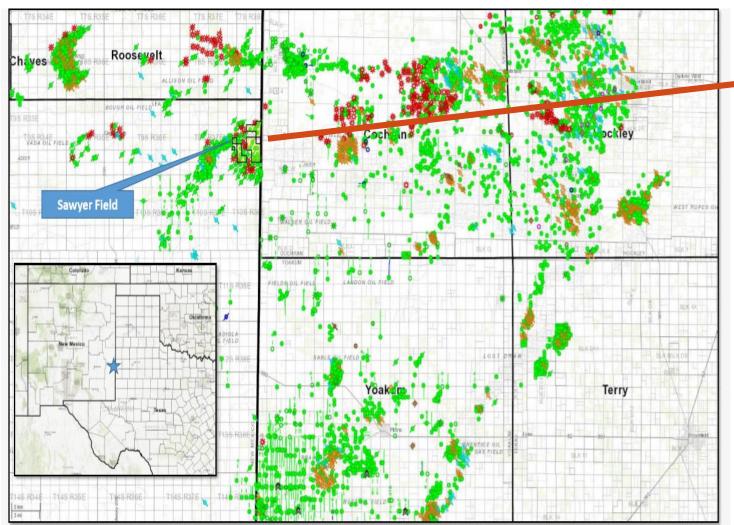
CONTENTS

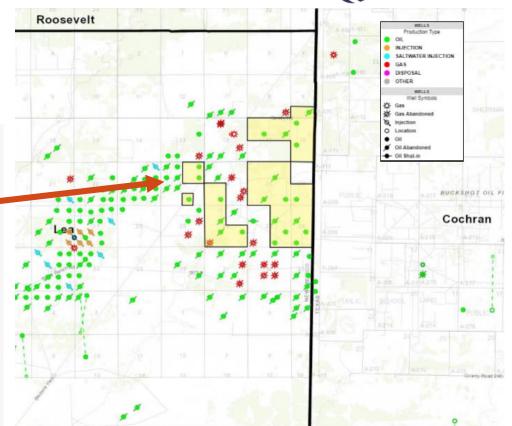
I.Overview


- 2.Geology
- 3.Production
- 4.Well sites
- 5.Upside

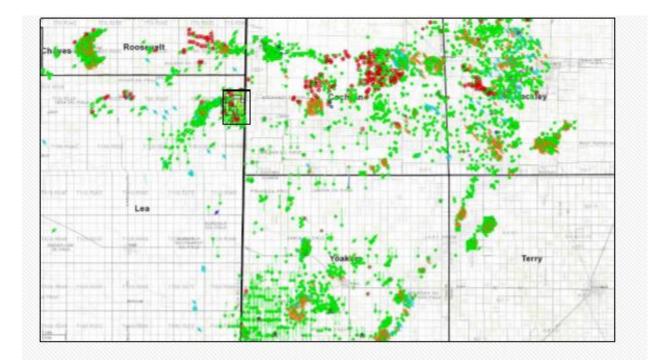

ASSET HIGHLIGHTS

- Shallow (5,000 ft) oil & gas production from the Permian San Andres formation
- 2,500 acre HBP in Lea County, New Mexico
- Current field production (15 wells, 11 producing) : 26 bopd, 240 mcfpd, 130 bwpd
- Depth limitation: all rights surface to base of San Andres
- **WI:** 100 %, NRI: 75%
- Stable production
- □ Fracture, acidize&perfs stimulation potentials
- Most of acreage originally drilled on 40 and 160 acre spacing
- Infrastructure already in place
- □ 3rd party study vertical or horizontal potential:
 - 51 vertical PUDs,18 horizontal laterals



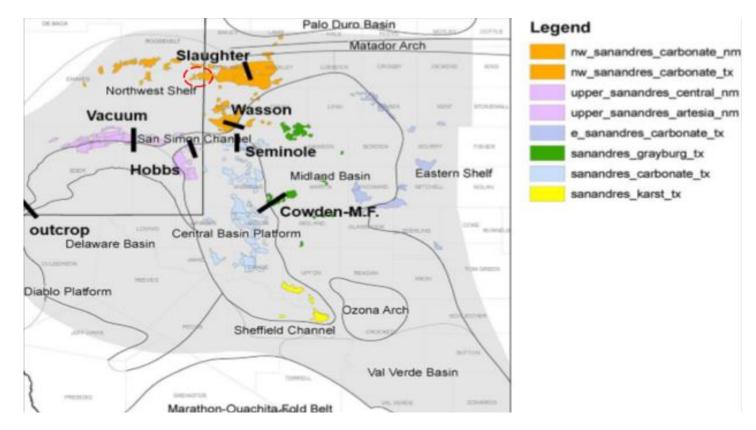

FIELD LOCATION

FIELD LOCATION

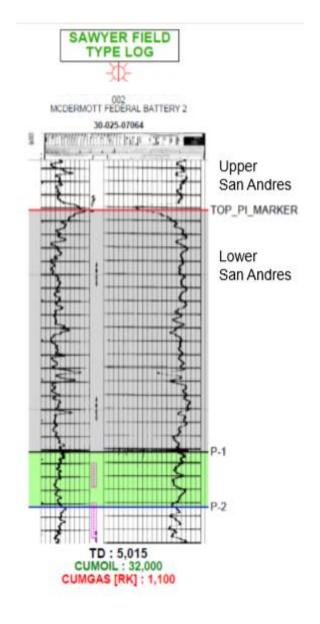

WELL LIST

Well Name:	API Number:	Lease Type	Status
Ohio Federal #1	30-025-04975	F	Producing
Aikman Federal #1	30-025-04976	F	Producing
McDermott #2	30-025-07064	F	Producing
Bell B #2	30-025-07066	F	inactive
Great Western Federal #1	30-025-07069	F	Shut-in (HIT)
Gulf Federal #1	30-025-07071	F	Producing
Great Wester B Federal #1	30-025-21445	F	Producing
Great Wester C Federal #1	30-025-21446	F	Producing
State 16A Com #1	30-025-24795	S	inactive
State 16B Com #1	30-025-24994	S	inactive
Brown 17 #1	30-025-24953	р	Producing
Gulf Federal #5	30-025-31469	F	Producing
Great Western A Federal #2	30-025-36335	F	Producing
New Wells:			
Aikman Federal #2	30-025-44305	F	Producing
McDermott Federal #3	30-025-44306	F	Producing

CONTENTS


- I.Overview
- 2.Geology
- 3.Production
- 4.Well sites
- •5.Next step work

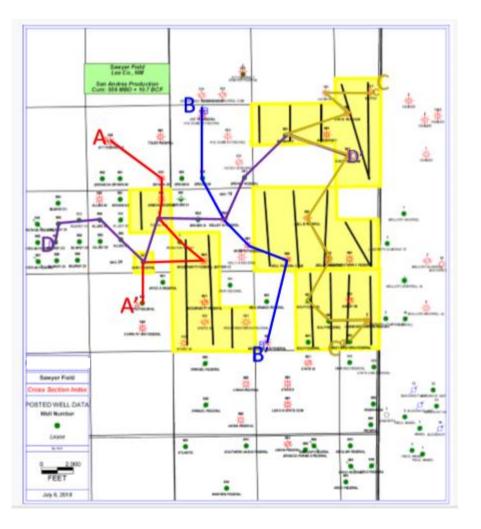
FIELD CHARACTERISTICS


Sawyer field is located on the northern part of Central Basin Platform of Permian Basin, focused on the San Andres formation. Typical vertical recovery factor for San Andres formation is between 11%-14%, while the Sawyer field has a recovery around 7% of OOIP indicating a potential for further development.

GEOLOGIC CHARACTERISTICS

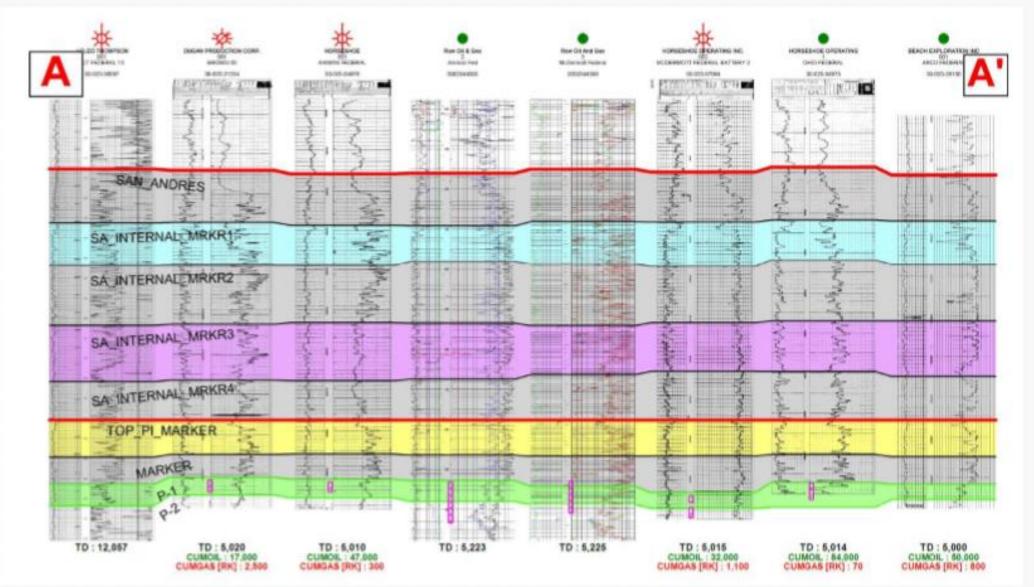
The San Andres formation at Sawyer field, as at Slaughter field, consists of an **anhydrite-dolomite**. The upper San Andres is separated from the lower San Andres by a highly radioactive interval known as the **Pi marker** that provides for an excellent structural mapping datum. It is the lower San Andres that is productive at Sawyer and at the nearby surrounding field.

GEOLOGIC CHARACTERISTICS

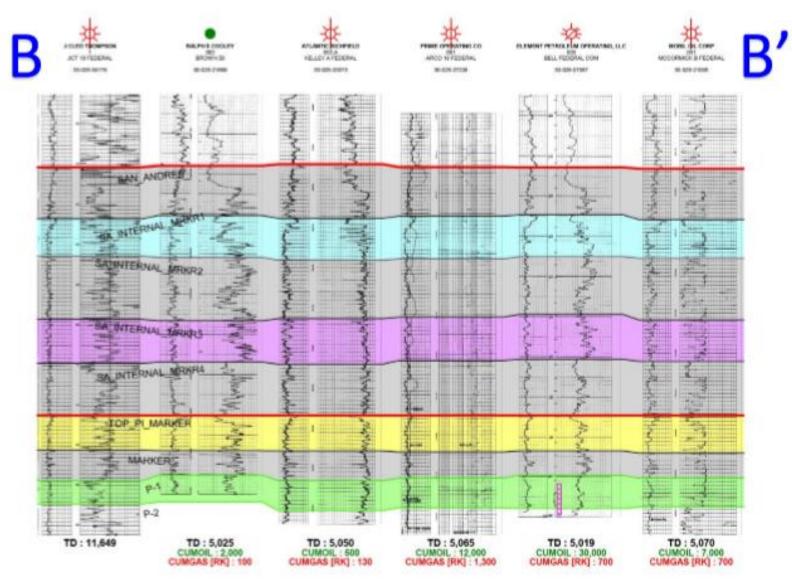

Cores taken by various operators in the early 60's indicated porosities between 6% and 8% an **up to 12 md permeability.** This is considered "tight" rock that requires hydraulic fracture treatment to recover rated of oil and gas reserves that are economical. To date the productive interval is only acidized and yet to have a modern frac stimulation.

In addition, horizontal drilling, with multi-stage fracs, could further enhance recovery by linking numerous pockets of hydrocarbons yet to be recovered, and reaching areas not yet drained by "conventional" vertical completions.

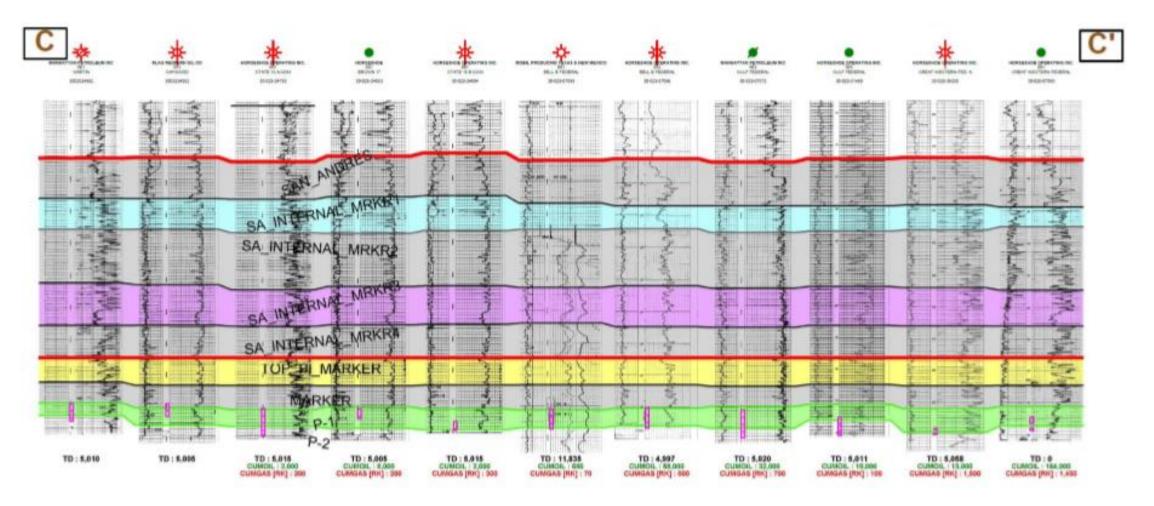
				Core Data				
Lease		Porosity	Net Pay	Perm	90° Perm	Sw	Sol	Acres
Great Western Federal #1		7.2	30.0	5.4	0.2	30.6	13.5	
Bell Federal #1		6.0	29.6	0.5	0.2	30.0	10.3	
Bell Federal #2		7.1	40.9	11.0	6.5	32.2	11.9	
Bell Federal #3		6.7	21.5	0.7	0.3	26.0	12.9	
Ohio Federal #1		6.8	54.0	3.9	2.4	32.2	10.0	
P-1	avg	6.6	35.2	4.3	1.9	30.2	11.7	
Great Western Federal #1		8.1	35.0	3.8	2.1	36.4	13.4	
Bell Federal #1		7.2	19.4	0.8	0.6	30.0	11.6	
Bell Federal #2		7.4	27.8	12.0	5.9	30.3	13.2	
Bell Federal #3		7.7	44.3	5.6	3.6	23.0	12.5	
Ohio Federal #1		7.9	19.0	11.0	4.6	32.6	13.0	
P-2	avg	7.7	29.1	6.6	3.4	30.5	12.7	16
		Acre-ft Pay	Pore Volume	Hydro. PV (res.bbl)	Hydro. PV (STB)			
	avg	10288	5,674,797	694,028	578,356			
	OOIF	per well (STB)		578,356			
		avg oil produc avg oil recove			35,487 6.14%	Co	re Da	ta
		Acre-ft Pay	Pore Volume	Hydro. PV (res bbl)	Hydro, PV (STB)			
	avg	10288	5,674,797	3,259,603	2,963,276			
	OGI	P per well (MCI avg gas prode avg gas record	uction (per well)		2,963,276 614,273 20,73%			



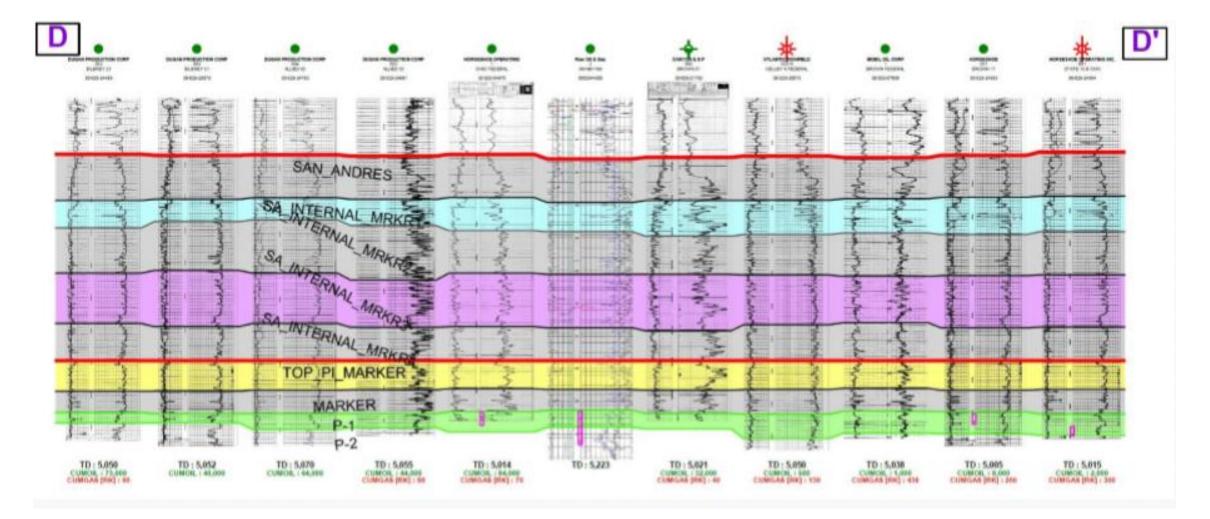
CROSS SECTION INDEX MAP



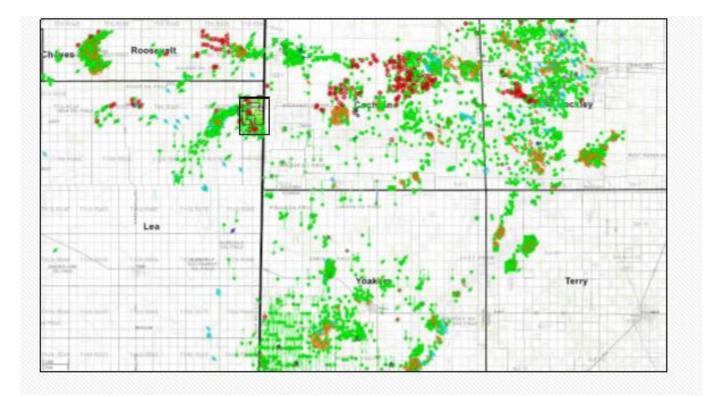
CROSS-SECTION A-A'



CROSS-SECTION B-B'

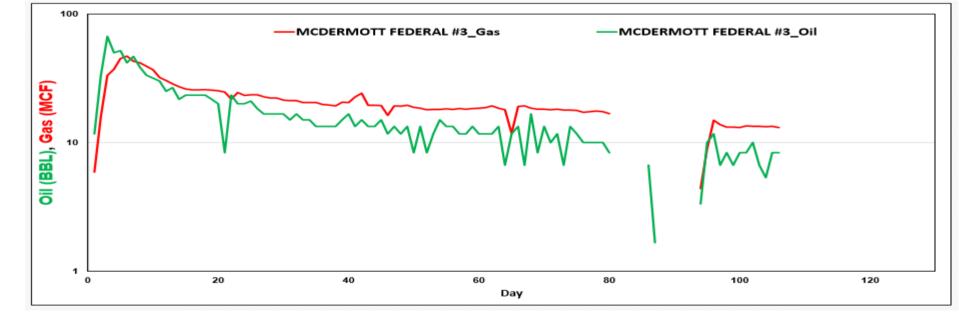


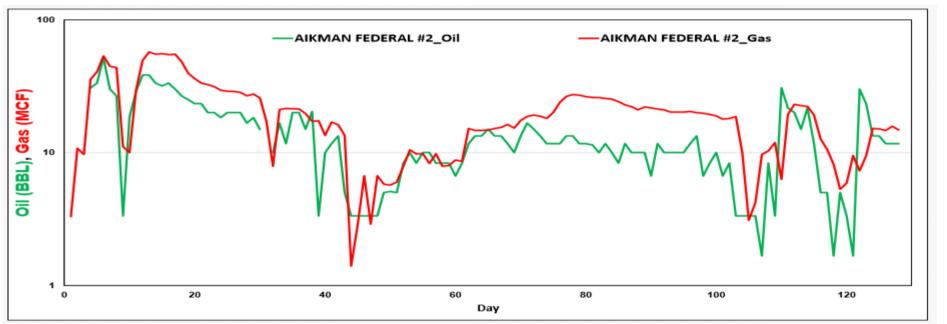
CROSS-SECTION C-C'


CROSS-SECTION D-D'

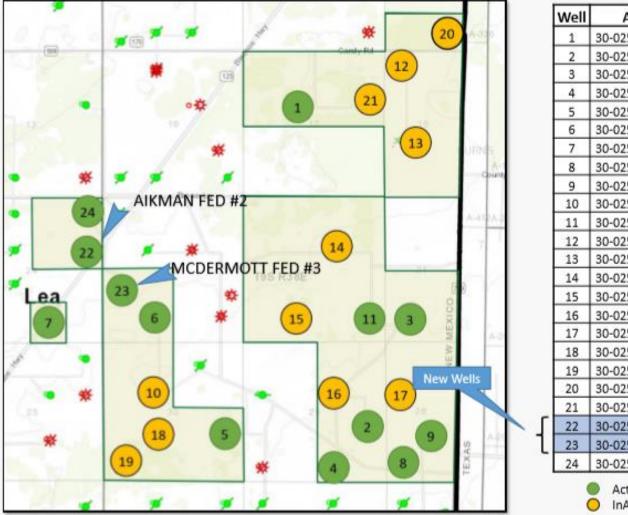
CONTENTS

- I.Overview
- 2.Geology
- 3.Production
- 4.Well sites
- 5.Upside

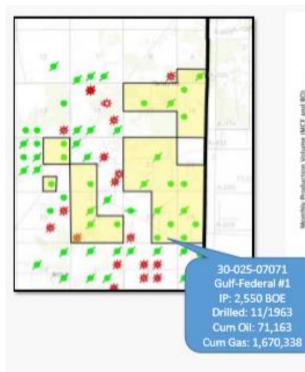

MONTHLY PRODUCTION HISTORY


Extremely Stable Production

NEW WELLS PRODUCTION

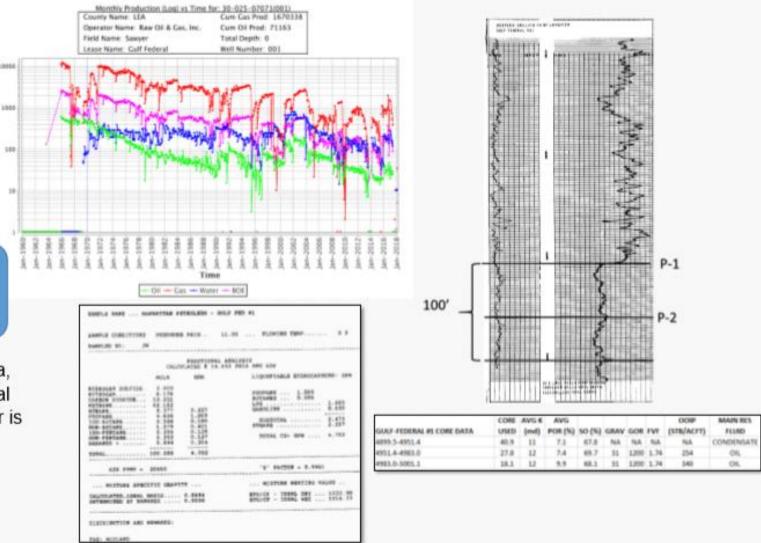


CUMULATIVE PRODUCTION



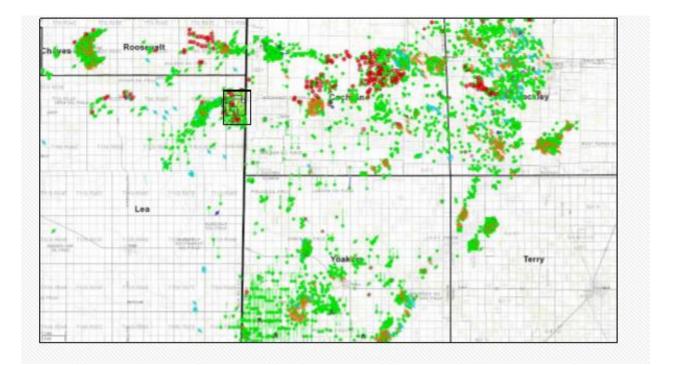
Well	API	First PROD	CUM OIL	CUM GAS	CUM WTR
1	30-025-24953	May-75	8,737	198,682	66,196
2	30-025-31469	Jan-92	18,210	170,892	65,233
3	30-025-21446	Jan-66	31,957	752,227	47,762
4	30-025-07071	Sep-63	71,178	1,670,357	130,452
5	30-025-21445	Jan-66	29,157	3,619,547	76,270
6	30-025-07064	Jan-66	33,235	1,111,903	163,192
7	30-025-04975	Oct-58	85,912	71,227	126,828
8	30-025-07069	May-58	166,141	1,462,890	231,512
9	30-025-36335	May-05	12,364	88,730	47,788
10	30-025-07075	Jan-66	21,622	2,209,085	176,009
11	30-025-07066	Aug-63	59,138	806,701	52,482
12	30-025-24795	Jan-76	2,170	207,473	33,719
13	30-025-24994	Jan-76	1,750	320,775	25,267
14	30-025-07065	Aug-63	580	67,269	367
15	30-025-07067	Aug-63	30,124	697,147	57,599
16	30-025-07072	Sep-63	32,140	738,496	61,230
17	30-025-21235	Jan-66	57,682	1,111,515	45,128
18	30-025-23637	Nov-71	11,977	1,227,834	83,812
19	30-025-07074	Jan-66	4,149	301,989	4,059
20	30-025-24882	Jan-76	174	522,051	2,803
21	30-025-24995	Jan-76	1,197	94,975	19,222
22	30-025-44305	Apr-18	988		7,576
23	30-025-44306	Apr-18	302		223
24	30-025-04976	Jan-66	48,074	291,822	56,447

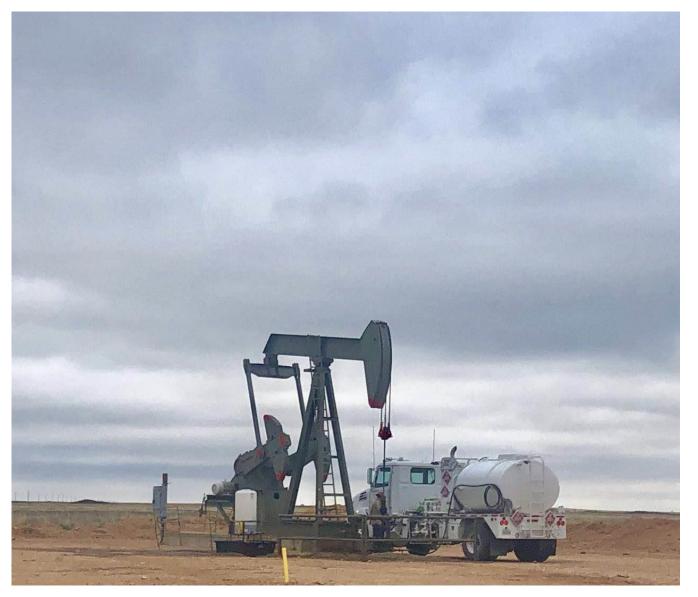
Active Wells



FIELD OOIP

1 Arbeit

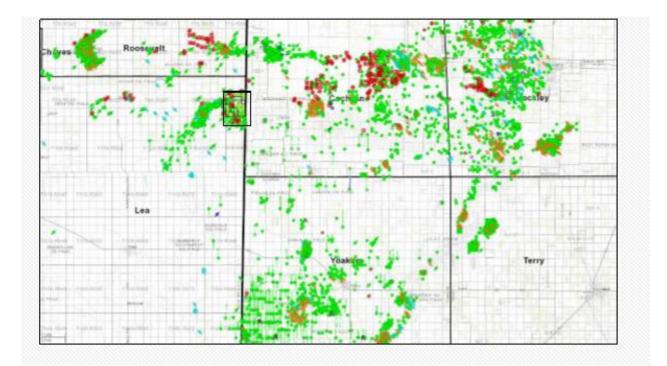

Based on Gulf-Federal #1 core data, OOIP for 100' of San Andres interval over a quarter section of a reservoir is over 3 MMBO.


CONTENTS

- I.Overview
- 2.Geology
- 3.Production
- •4.Well sites
- 5.Upside

WELL SITE

WELL SITE



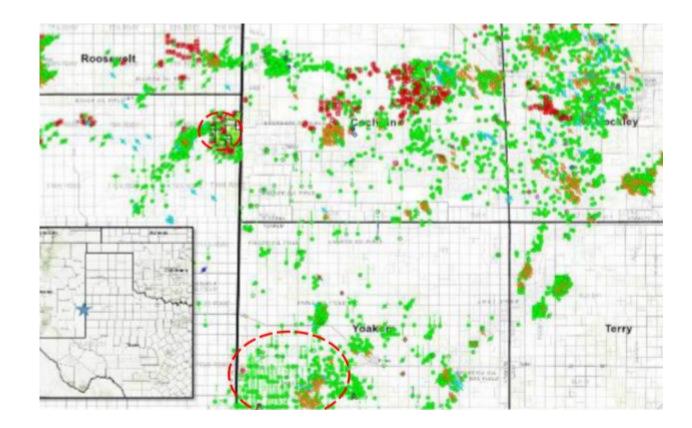
CONTENTS

- I.Overview
- 2.Geology
- 3.Production
- 4.Well sites
- •5.Upside

UPSIDE

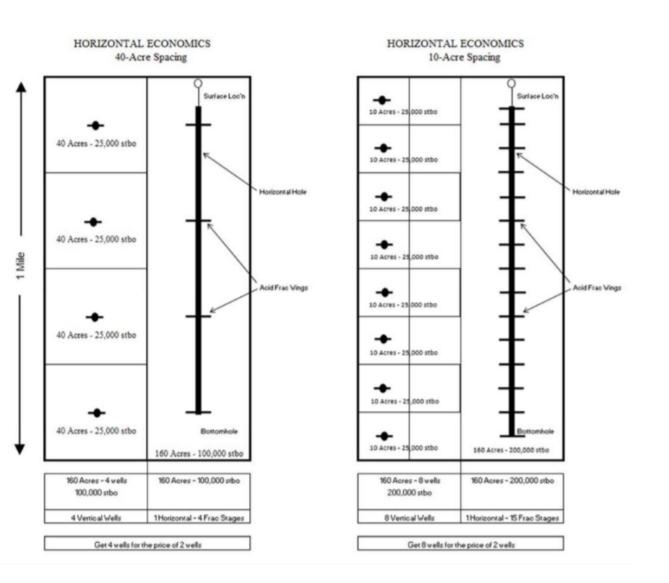
- I--- Develop infill drilling locations on lease
- 2 --- Re-acidizing
- 3 --- Frac-Job
- •4 --- Diminish the paraffin

51Vertical PUDs 18 Lateral Locations Las Co., 100 Sanyer Field Lea Co., NW 13 Ŧ San Andres Presidentes San Andres Production Cum: 559 MBO = 18.7 BCF -• 37 di. . **Potential Locations** and the distance New Dawn Exerp. Banaryan Photos New Dawn Energ Proposed Laterals . POSTED WELL BAS Sawyer Field Web Number Verbicei PVD8 Lants . 1.1 ٠ FEE1


Vertical

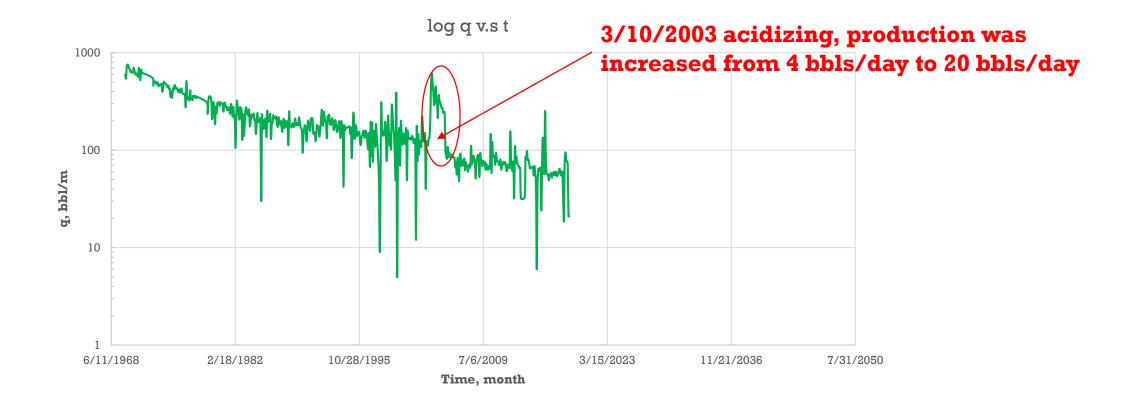
The San Andres formation was deposited on a broad carbonate shelf resulting in deposition of laterally continuous subtidal carbonates.

Typical vertical wells recover an average of 34 MBO. Complete infill drilling on 20-acre spacing and capture an estimated 1,734 MBO of reserves through 51 new drills.


Horizontal

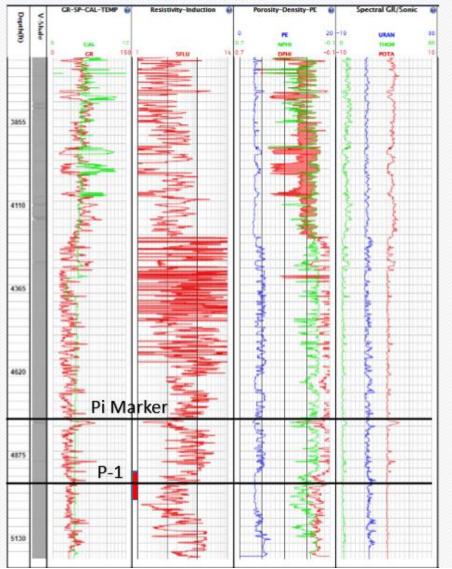
The best analogy for development of the San Andres is located to the southeast of the Sawyer Field in Yoakum County shown in the map.

- Typical vertical wells produced only 25,000 barrels per well, which are marginally economic. However, linking numerous of these wells with a horizontal wellbore, along with multi-stage fractures improves the economics considerably and produces reserves closer to 200,000 barrels per well as shown on the diagram right.
- The Sawyer Field has a higher cumulative production than is found in Yoakum County, 35,000 BO vs 25,000 BO. In addition, Sawyer Field is developed on 40 and 160 acre spacing, and not fully developed, while it is common in the area for these San Andres fields to be developed on 20-acre spacing, and even more recently on 10-acre spacing or less. Theoretically, the recovery of the horizontal wells should be higher in Sawyer than what is observed in Yoakum County.



- \succ SA HZ Well EUR (Yoakum County):
- 8 x Vertical Well EUR (25,000 BO) = 200,000 BO (300,000 BO with current performance due to modern Frac technology)
- > AVG vertical Well EUR in Sawyer Field:35,000 BO
- Estimated HZ performance: > 300,000 BO
- I5 New Horizontal well estimate reserves > 4,500,000 BO

2 --- RE-ACIDIZING



UPSIDE-3 FRAC-JOB

McDermott Federal # 3

Fracture Half-Length (ft)	204	Propped Half-Length (ft)	193
Total Fracture Height (ft)	77	Total Propped Height (ft)	73
Depth to Fracture Top (ft)	4933	Depth to Propped Fracture Top (ft)	4936
Depth to Fracture Bottom (ft)	5011	Depth to Propped Fracture Bottom (ft)	5009
Equivalent Number of Multiple Fracs		Max. Fracture Width (in)	0.34
Fracture Slurry Efficiency**	0.27	Avg. Fracture Width (in)	0.23
		Avg. Proppant Concentration (lb/ft ²)	0.60

* All values reported are for the entire fracture system at a model time of 39.00 min (end of Stage 7 Main frac flush) ** Value is reported for the end of the last pumping stage (Stage 7, Main frac flush)

Table 2: Fracture Conductivity Summary*

Avg. Conductivity** (mD·ft)	566.4	Avg. Frac Width (Closed on prop) (in)	0.067
Dimensionless Conductivity**	21.63	Ref. Formation Permeability (mD)	0.136
Proppant Damage Factor	0.50	Undamaged Prop Perm at Stress (mD)	199717
Apparent Damage Factor***		Prop Perm with Prop Damage (mD)	99858
Total Damage Factor		Prop Perm with Total Damage (mD)	99858
Effective Propped Length (ft)		Proppant Embedment (in)	0.000

* All values reported are for the entire fracture system. Actual conductivity could be lower if equivalent multiple fractures have been modeled

** Total Damage Factor and Proppant Embedment have been applied

*** Apparent Damage due to non-Darcy and multi-phase flow

Table 3: Fracture Pressure Summary*

Model Net Pressure** (psi)	1552	BH Fracture Closure Stress (psi)	3281
Observed Net Pressure** (psi)	0	Closure Stress Gradient (psi/ft)	0.660
Hydrostatic Head*** (psi)	2159	Avg. Surface Pressure (psi)	3946
Reservoir Pressure (psi)	1600	Max. Surface Pressure (psi)	4246

* Averages and maxima reported for Main Frac stages.

" Values reported for the end of the last pumping stage (Stage 7, Main frac flush)

*** Value reported for clean fluid

Table 4: Operations Summary*

Total Clean Fluid Pumped (bbls)	296.3	Total Proppant Pumped (klbs)	15.0
Total Slurry Pumped (bbls)	312.3	Total Proppant in Fracture (klbs)	14.8
Pad Volume (bbls)	119.0	Avg. Hydraulic Horsepower (hp)	773
Pad Fraction (% of Slurry Vol)**	41.1	Max. Hydraulic Horsepower (hp)	832
Pad Fraction (% of Clean Vol)**	43.5	Avg. Btm. Slurry Rate (bpm)	8.0
Primary Fluid Type	20# B-Frac	Primary Proppant Type	Jordan Sand 20/40
Secondary Fluid Type		Secondary Proppant Type	

4 --- DIWINISH THE PARAFFIN

• There was discover that oil had a high paraffin content, so the last operating company had success with a hot oil process to diminish the paraffin accumulations in the borehole. It was relatively cheap and works well